organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-Benzyl-3-(4-chlorophenyl)-2-isobutylamino-5,6,7,8-tetrahydropyrido-[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one

Hong Chen^a* and Quan-Bin Liao^b

^aHubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, People's Republic of China, and ^bCollege of Chemistry and Life Science, China Three Gorges University, Yichang 443002, People's Republic of China Correspondence e-mail: chenhong3736@sina.com

Received 8 January 2012; accepted 17 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.164; data-to-parameter ratio = 18.7.

In the title compound, $C_{26}H_{27}ClN_4OS$, the thienopyrimidine fused-ring system is close to coplanar (r.m.s. deviation = 0.0089 Å), with a maximum deviation of 0.0283 (17) Å for the N atom adjacent to the benzene ring. This ring system forms dihedral angles of 83.51 (3) and 88.20 (5) $^{\circ}$ with the adjacent benzyl and phenyl rings, respectively. In the crystal, N- $H \cdots Cl$ interactions and $C - H \cdots O$ hydrogen bonds are observed.

Related literature

For the biological and pharmaceutical properties of compounds containing a fused thienopyrimidine system, see: Amr et al. (2010); Huang et al. (2009); Jennings et al. (2005); Kikuchi et al. (2006); Mavrova et al. (2010); Santagati et al. (2002). For similar crystal structures, see: Xie et al. (2008); Chen et al. (2011).

a = 17.428 (13) Å

c = 16.170 (13) Å

b = 9.391 (7) Å

Experimental

Crystal data C26H27CIN4OS $M_{\rm r} = 479.03$ Monoclinic, $P2_1/c$

 $\beta = 111.995 (7)^{\circ}$ $V = 2454 (3) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.934, \ T_{\max} = 0.949$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ 300 parameters $wR(F^2) = 0.164$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 5611 reflections

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4\cdots Cl1^{i}$	0.86	2.73	3.469 (3)	144
$C8 - H8B \cdots O1^{ii}$	0.97	2.59	3.220 (4)	123
Commentation (i)		(;;)		

 $\mu = 0.27 \text{ mm}^{-1}$

 $0.26 \times 0.24 \times 0.20$ mm

25485 measured reflections

5611 independent reflections 3883 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.090$

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 1, -y + 2, -z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Foundation of China (Project No. 21102084), the Key Project of Hubei Provincial Department of Education (Project No. D20091301) and the Doctoral Startup Foundation of China Three Gorges University (Project No. KJ2009B004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2265).

References

- Amr, A. E. G., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935-5942.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H., Hu, H.-J., Yan, K. & Dai, Q.-H. (2011). Acta Cryst. E67, o2228.
- Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831-833.
- Jennings, L. D., Kincaid, S. L. & Wang, Y. D. (2005). Bioorg. Med. Chem. Lett. 15. 4731-4735
- Kikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698-4706.
- Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856-5861.
- Santagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717-728.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, 02434.

supplementary materials

Acta Cryst. (2012). E68, o822 [doi:10.1107/S1600536812007246]

7-Benzyl-3-(4-chlorophenyl)-2-isobutylamino-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3*H*)-one

Hong Chen and Quan-Bin Liao

Comment

Derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities (Amr *et al.* 2010; Huang *et al.* 2009; Jennings *et al.* 2005; Kikuchi *et al.* 2006; Mavrova *et al.* 2010; Santagati *et al.* 2002). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine *via* aza-wittig reaction under mild conditions. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Chen *et al.*, 2011; Xie *et al.*, 2008). The title compound has potential use as a precursor for obtaining bioactive molecules with fluorescence properties. Herein, we report its crystal structure (Fig. 1).

In the crystal structure of the title compound, $C_{26}H_{27}CIN_4OS$, the thienopyrimidine fused-ring system is close to coplanar (r.m.s deviation = 0.0089 Å) with a maximum deviation of 0.0283 (17) Å for atom N(3). This ring system forms dihedral angles of 83.51 (3) and 88.20 (5)° with the adjacent 6-membered rings C1–C6 and C17–C22, respectively. Intermolecular N4—H4…Cl1ⁱ interactions, as well as intermolecular hydrogen bonds (C8—H8*B*…O1ⁱⁱ), help to stablize the crystal structure (Symmetry codes: (i) -*x* + 1, -*y* + 2, -*z*; (ii) -*x* + 1, -*y* + 2, -*z* + 1) (Table 1).

Experimental

1-Chloro-4-isocyanatobenzene (2 mmol) under nitrogen atmosphere was added to a solution of iminophosphorane (1.15 g, 2 mmol) in anhydrous dichloromethane (10 ml) at room temperature. When the reaction mixture was left unstirred for 12 h at 273–278 K, iminophosphorane was consumed (TLC monitored). The solvent was removed under reduced pressure and ether/petroleum ether (volume ratio 1:2, 20 ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimide, which was used directly without further purification. *Iso*-butylamine (2 mmol) was added to the solution of carbodiimide in anhydrous dichloromethane (10 ml). After the reaction mixture was left unstirred for 5–6 h, the solvent was removed and the residual was recrystallized from ethanol and dichloromethane to give the expected title compound in white crystals. Yield: 87%, m.p. 461–462 K. IR (KBr) cm⁻¹ 3341 (N—H), 1675 (C=O), 1541, 1433, 1223, 691; ¹H NMR (CDCl₃, 600 MHz) δ (p.p.m.): 7.55–7.22 (m, 9H, Ar—H), 4.07 (br, 1H, NH), 3.72 (s, 2H, Ar—CH₂), 3.60 (s, 2H, NCH₂-thiophene), 3.18 (t, *J* = 6.3 Hz, 2H, NHCH₂), 2.98 (t, *J* = 5.7 Hz, 2H, NCH₂CH₂), 2.83 (t, *J* = 5.7 Hz, 2H, NCH₂CH₂), 1.80–1.76 (m, *J* = 5.4 Hz, 1H, CH), 0.83 (s, 6H, 2 CH₃); EI–MS (*m*/z, %): 480.06 (*M*+2⁺, 17), 478.01 (*M*⁺, 52), 387.02 (14), 358.96 (57), 303.01 (42), 152.03 (21), 91.09 (100), 44.02 (15). Anal. Calcd. (%) for C₂₆H₂₇ClN₄OS: C, 65.19; H, 5.68; N, 11.70. Found (%): C, 65.47; H, 5.85; N, 11.89.

Refinement

All H atoms were positioned geometrically [C—H = 0.93, 0.96, 0.97 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2-1.5U_{eq}$ of the C or N atom.

Computing details

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound with 50% probability displacement ellipsoids.

$\label{eq:2.3} 7-Benzyl-3-(4-chlorophenyl)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [2, 3-d] pyrimidin-4(3H)-2-isobutylamino-5, 6, 7, 8-tetrahydropyrido [4', 3': 4, 5] thieno [4', 3': 4, 5] th$

one

Crystal data

C ₂₆ H ₂₇ ClN ₄ OS $M_r = 479.03$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.428 (13) Å b = 9.391 (7) Å c = 16.170 (13) Å $\beta = 111.995 (7)^\circ$ $V = 2454 (3) \text{ Å}^3$	F(000) = 1008 $D_x = 1.297 \text{ Mg m}^{-3}$ Melting point: 462 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4592 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 296 K Prism, colourless $0.26 \times 0.24 \times 0.20 \text{ mm}^{-1}$
Data collection	0.20 ^ 0.24 ^ 0.20 mm
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD Profile fitting scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.934$, $T_{max} = 0.949$ 25485 measured reflections 5611 independent reflections 3883 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.090$	$k = -12 \rightarrow 12$
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$	$l = -20 \longrightarrow 20$
$h = -22 \rightarrow 22$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.070$	Hydrogen site location: inferred from
$wR(F^2) = 0.164$	neighbouring sites
S = 1.06	H-atom parameters constrained
5611 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 1.2122P]$
300 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.63895 (6)	1.09995 (13)	0.09315 (7)	0.0814 (3)
C1	0.0316 (2)	1.1445 (5)	0.6378 (3)	0.0782 (11)
H1	-0.0188	1.1831	0.6337	0.094*
C2	0.0970 (2)	1.2321 (4)	0.6461 (2)	0.0695 (10)
H2	0.0913	1.3303	0.6480	0.083*
C3	0.1715 (2)	1.1734 (4)	0.6516 (2)	0.0585 (8)
H3	0.2158	1.2333	0.6577	0.070*
C4	0.18193 (19)	1.0276 (3)	0.64841 (19)	0.0482 (7)
C5	0.1159 (2)	0.9416 (4)	0.6414 (3)	0.0692 (10)
H5	0.1215	0.8431	0.6404	0.083*
C6	0.0411 (2)	1.0003 (5)	0.6358 (3)	0.0870 (13)
H6	-0.0032	0.9408	0.6305	0.104*
C7	0.26265 (19)	0.9681 (4)	0.65007 (19)	0.0517 (7)
H7A	0.3077	1.0067	0.7009	0.062*
H7B	0.2627	0.8654	0.6570	0.062*
C8	0.35672 (18)	0.9495 (4)	0.57200 (19)	0.0515 (7)
H8A	0.3558	0.8462	0.5708	0.062*
H8B	0.3992	0.9794	0.6278	0.062*
C9	0.37759 (17)	1.0049 (4)	0.49451 (18)	0.0509 (7)
H9A	0.3894	1.1061	0.5020	0.061*
H9B	0.4264	0.9567	0.4934	0.061*
C10	0.30634 (16)	0.9793 (3)	0.40863 (17)	0.0399 (6)
C11	0.23083 (16)	0.9471 (3)	0.40872 (17)	0.0404 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C12	0.20962 (17)	0.9400 (3)	0.49018 (18)	0.0470 (7)
H12A	0.1583	0.9908	0.4794	0.056*
H12B	0.2016	0.8415	0.5030	0.056*
C13	0.30607 (15)	0.9815 (3)	0.31940 (17)	0.0394 (6)
C14	0.23034 (16)	0.9494 (3)	0.25440 (18)	0.0407 (6)
C15	0.27191 (17)	0.9691 (3)	0.13904 (18)	0.0416 (6)
C16	0.37323 (17)	1.0126 (3)	0.29188 (18)	0.0429 (6)
C17	0.41915 (16)	1.0218 (3)	0.16662 (17)	0.0406 (6)
C18	0.43494 (19)	1.1580 (3)	0.1439 (2)	0.0519 (7)
H18	0.4005	1.2332	0.1445	0.062*
C19	0.50245 (19)	1.1807 (4)	0.1202 (2)	0.0549 (8)
H19	0.5141	1.2717	0.1054	0.066*
C20	0.55211 (18)	1.0682 (4)	0.11873 (19)	0.0511 (7)
C21	0.53581 (18)	0.9314 (4)	0.1390 (2)	0.0522 (8)
H21	0.5690	0.8558	0.1356	0.063*
C22	0.46907 (18)	0.9086 (3)	0.16437 (19)	0.0474 (7)
H22	0.4580	0.8177	0.1798	0.057*
C23	0.17702 (19)	0.9558 (3)	-0.01924 (19)	0.0538 (8)
H23A	0.1411	0.9049	0.0041	0.065*
H23B	0.1808	0.9003	-0.0682	0.065*
C24	0.1383 (2)	1.0970 (4)	-0.0548 (2)	0.0699 (10)
H24	0.1388	1.1552	-0.0043	0.084*
C25	0.1863 (3)	1.1749 (5)	-0.1013 (3)	0.1069 (17)
H25A	0.2408	1.1960	-0.0591	0.160*
H25B	0.1583	1.2620	-0.1261	0.160*
H25C	0.1903	1.1162	-0.1481	0.160*
C26	0.0481 (3)	1.0733 (6)	-0.1165 (3)	0.1126 (18)
H26A	0.0231	1.1631	-0.1401	0.169*
H26B	0.0185	1.0301	-0.0835	0.169*
H26C	0.0461	1.0118	-0.1647	0.169*
N1	0.27599 (14)	1.0031 (3)	0.56719 (14)	0.0423 (5)
N2	0.21063 (14)	0.9434 (3)	0.16459 (15)	0.0438 (6)
N3	0.35216 (13)	0.9995 (3)	0.19807 (14)	0.0419 (5)
N4	0.25971 (15)	0.9662 (3)	0.05109 (15)	0.0527 (6)
H4	0.3020	0.9707	0.0360	0.079*
S1	0.15757 (4)	0.91648 (9)	0.30144 (5)	0.0500 (2)
O1	0.44421 (12)	1.0478 (3)	0.33911 (13)	0.0578 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0590 (5)	0.1216 (9)	0.0769 (6)	-0.0133 (5)	0.0407 (5)	-0.0021 (6)
C1	0.064 (2)	0.086 (3)	0.100 (3)	0.006 (2)	0.048 (2)	0.002 (2)
C2	0.071 (2)	0.064 (2)	0.084 (3)	0.0060 (18)	0.042 (2)	-0.0009 (19)
C3	0.0549 (19)	0.060(2)	0.064 (2)	-0.0091 (15)	0.0263 (17)	-0.0018 (16)
C4	0.0508 (17)	0.059 (2)	0.0379 (15)	-0.0035 (14)	0.0198 (14)	0.0015 (13)
C5	0.070 (2)	0.062 (2)	0.084 (3)	-0.0081 (18)	0.039 (2)	0.0008 (18)
C6	0.062 (2)	0.086 (3)	0.126 (4)	-0.018 (2)	0.051 (3)	-0.003 (3)
C7	0.0520 (18)	0.062 (2)	0.0397 (16)	0.0025 (14)	0.0156 (14)	0.0039 (13)
C8	0.0393 (16)	0.070 (2)	0.0397 (15)	0.0056 (14)	0.0086 (13)	0.0014 (14)

C9	0.0308 (14)	0.079 (2)	0.0394 (15)	0.0008 (14)	0.0087 (12)	-0.0056 (14)
C10	0.0313 (13)	0.0452 (16)	0.0382 (14)	0.0002 (11)	0.0074 (11)	-0.0034 (11)
C11	0.0371 (14)	0.0460 (17)	0.0352 (13)	-0.0030 (11)	0.0102 (12)	-0.0041 (11)
C12	0.0397 (15)	0.0570 (19)	0.0441 (16)	-0.0074 (13)	0.0154 (13)	-0.0044 (13)
C13	0.0301 (13)	0.0477 (17)	0.0371 (14)	-0.0011 (11)	0.0087 (11)	-0.0014 (11)
C14	0.0328 (14)	0.0461 (17)	0.0394 (14)	-0.0035 (11)	0.0091 (12)	-0.0007 (11)
C15	0.0379 (14)	0.0441 (17)	0.0376 (14)	0.0008 (11)	0.0082 (12)	0.0002 (11)
C16	0.0364 (14)	0.0502 (18)	0.0376 (14)	0.0011 (12)	0.0087 (12)	-0.0021 (12)
C17	0.0358 (14)	0.0475 (17)	0.0365 (14)	-0.0018 (12)	0.0111 (12)	0.0013 (11)
C18	0.0524 (18)	0.0488 (19)	0.0556 (18)	0.0061 (14)	0.0216 (15)	0.0053 (14)
C19	0.0542 (18)	0.056 (2)	0.0566 (18)	-0.0067 (15)	0.0230 (16)	0.0079 (14)
C20	0.0418 (16)	0.070(2)	0.0422 (16)	-0.0064 (14)	0.0162 (14)	-0.0015 (14)
C21	0.0429 (16)	0.063 (2)	0.0484 (17)	0.0054 (14)	0.0140 (14)	-0.0098 (14)
C22	0.0459 (16)	0.0445 (17)	0.0498 (16)	-0.0005 (13)	0.0158 (14)	-0.0005 (13)
C23	0.0480 (17)	0.066 (2)	0.0369 (15)	-0.0093 (14)	0.0037 (14)	0.0019 (13)
C24	0.065 (2)	0.066 (2)	0.059 (2)	0.0075 (18)	0.0009 (18)	-0.0100 (17)
C25	0.109 (4)	0.074 (3)	0.102 (3)	-0.022 (3)	-0.001 (3)	0.032 (3)
C26	0.068 (3)	0.124 (4)	0.104 (4)	0.014 (3)	-0.015 (3)	0.004 (3)
N1	0.0377 (12)	0.0533 (15)	0.0338 (11)	0.0022 (10)	0.0107 (10)	-0.0011 (10)
N2	0.0344 (12)	0.0553 (16)	0.0363 (12)	-0.0041 (10)	0.0071 (10)	-0.0018 (10)
N3	0.0338 (12)	0.0507 (15)	0.0380 (12)	-0.0038 (10)	0.0098 (10)	0.0003 (10)
N4	0.0385 (13)	0.0814 (19)	0.0333 (12)	-0.0024 (12)	0.0079 (11)	0.0015 (11)
S1	0.0332 (4)	0.0741 (6)	0.0398 (4)	-0.0117 (3)	0.0102 (3)	-0.0071 (3)
01	0.0337 (10)	0.0945 (18)	0.0403 (11)	-0.0104 (10)	0.0081 (9)	-0.0057 (10)

Geometric parameters (Å, °)

Cl1—C20	1.738 (3)	C14—N2	1.362 (4)
C1—C6	1.366 (6)	C14—S1	1.734 (3)
C1—C2	1.371 (5)	C15—N2	1.304 (3)
C1—H1	0.9300	C15—N4	1.357 (4)
С2—С3	1.382 (5)	C15—N3	1.396 (3)
С2—Н2	0.9300	C16—O1	1.231 (3)
С3—С4	1.384 (5)	C16—N3	1.426 (4)
С3—Н3	0.9300	C17—C22	1.383 (4)
C4—C5	1.375 (5)	C17—C18	1.386 (4)
C4—C7	1.505 (4)	C17—N3	1.453 (3)
С5—С6	1.388 (5)	C18—C19	1.383 (4)
С5—Н5	0.9300	C18—H18	0.9300
С6—Н6	0.9300	C19—C20	1.372 (4)
C7—N1	1.481 (4)	C19—H19	0.9300
C7—H7A	0.9700	C20—C21	1.381 (4)
С7—Н7В	0.9700	C21—C22	1.387 (4)
C8—N1	1.469 (4)	C21—H21	0.9300
С8—С9	1.521 (4)	C22—H22	0.9300
C8—H8A	0.9700	C23—N4	1.467 (4)
C8—H8B	0.9700	C23—C24	1.501 (5)
C9—C10	1.495 (4)	C23—H23A	0.9700
С9—Н9А	0.9700	C23—H23B	0.9700
С9—Н9В	0.9700	C24—C25	1.507 (6)

C10—C11	1.351 (4)	C24—C26	1.530 (5)
C10—C13	1.441 (4)	C24—H24	0.9800
C11—C12	1.497 (4)	C25—H25A	0.9600
C11—S1	1.750 (3)	C25—H25B	0.9600
C12—N1	1.470 (3)	C25—H25C	0.9600
C12—H12A	0.9700	C26—H26A	0.9600
C12—H12B	0.9700	C26—H26B	0.9600
C13—C14	1.378 (4)	C26—H26C	0.9600
C13—C16	1.429 (4)	N4—H4	0.8600
C6—C1—C2	119.6 (4)	O1-C16-N3	118.8 (3)
С6—С1—Н1	120.2	O1—C16—C13	127.7 (3)
C2—C1—H1	120.2	N3—C16—C13	113.5 (2)
C1—C2—C3	119.6 (4)	C22—C17—C18	120.8 (3)
C1—C2—H2	120.2	C22—C17—N3	119.6 (3)
С3—С2—Н2	120.2	C18—C17—N3	119.4 (3)
C2—C3—C4	121.7 (3)	C19—C18—C17	119.3 (3)
С2—С3—Н3	119.2	C19—C18—H18	120.3
С4—С3—Н3	119.2	C17—C18—H18	120.3
C5—C4—C3	117.8 (3)	C20—C19—C18	119.6 (3)
C5—C4—C7	122.1 (3)	С20—С19—Н19	120.2
C3—C4—C7	120.1 (3)	C18—C19—H19	120.2
C4—C5—C6	120.6 (4)	C19—C20—C21	121.7 (3)
С4—С5—Н5	119.7	C19—C20—C11	118.9 (3)
С6—С5—Н5	119.7	C21—C20—C11	119.4 (2)
C1—C6—C5	120.7 (4)	C20—C21—C22	118.9 (3)
С1—С6—Н6	119.6	C20—C21—H21	120.6
С5—С6—Н6	119.6	C22—C21—H21	120.6
N1—C7—C4	111.3 (2)	C17—C22—C21	119.7 (3)
N1—C7—H7A	109.4	C17—C22—H22	120.2
С4—С7—Н7А	109.4	C21—C22—H22	120.2
N1—C7—H7B	109.4	N4—C23—C24	114.1 (3)
С4—С7—Н7В	109.4	N4—C23—H23A	108.7
H7A—C7—H7B	108.0	C24—C23—H23A	108.7
N1—C8—C9	111.0 (2)	N4—C23—H23B	108.7
N1—C8—H8A	109.4	C24—C23—H23B	108.7
С9—С8—Н8А	109.4	H23A—C23—H23B	107.6
N1—C8—H8B	109.4	C23—C24—C25	111.4 (3)
С9—С8—Н8В	109.4	C23—C24—C26	109.0 (3)
H8A—C8—H8B	108.0	C25—C24—C26	111.8 (4)
С10—С9—С8	109.8 (2)	C23—C24—H24	108.2
С10—С9—Н9А	109.7	C25—C24—H24	108.2
С8—С9—Н9А	109.7	C26—C24—H24	108.2
С10—С9—Н9В	109.7	С24—С25—Н25А	109.5
С8—С9—Н9В	109.7	C24—C25—H25B	109.5
Н9А—С9—Н9В	108.2	H25A—C25—H25B	109.5
C11—C10—C13	111.5 (2)	С24—С25—Н25С	109.5
C11—C10—C9	120.4 (2)	H25A—C25—H25C	109.5
C13—C10—C9	128.1 (2)	H25B—C25—H25C	109.5

C10-C11-C12	124.9 (2)	C24—C26—H26A	109.5
C10-C11-S1	112.7 (2)	C24—C26—H26B	109.5
C12—C11—S1	122.4 (2)	H26A—C26—H26B	109.5
N1—C12—C11	110.6 (2)	C24—C26—H26C	109.5
N1—C12—H12A	109.5	H26A—C26—H26C	109.5
C11—C12—H12A	109.5	H26B—C26—H26C	109.5
N1—C12—H12B	109.5	C12—N1—C8	109.9 (2)
C11—C12—H12B	109.5	C12—N1—C7	109.7 (2)
H12A—C12—H12B	108.1	C8—N1—C7	110.4 (2)
C14—C13—C16	118.0 (2)	C15—N2—C14	114.9 (2)
C14—C13—C10	113.8 (2)	C15—N3—C16	122.5 (2)
C16—C13—C10	128.2 (2)	C15—N3—C17	121.4 (2)
N2—C14—C13	127.5 (3)	C16—N3—C17	116.1 (2)
N2—C14—S1	121.8 (2)	C15—N4—C23	122.5 (3)
C13—C14—S1	110.7 (2)	C15—N4—H4	118.8
N2-C15-N4	120.2 (2)	C23—N4—H4	118.8
N2-C15-N3	123.4 (2)	C14 = S1 = C11	91.35 (14)
N4—C15—N3	1164(2))11.55 (11)
	110.1 (2)		
C6-C1-C2-C3	0.4 (6)	C19 - C20 - C21 - C22	-22(5)
$C_1 - C_2 - C_3 - C_4$	0.7(0)	$C_{11} = C_{20} = C_{21} = C_{22}$	1763(2)
$C_{1}^{2} = C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2}$	-1.4(5)	C18 - C17 - C22 - C21	170.5(2)
$C_2 = C_3 = C_4 = C_3$	1.7(3)	$N_{3} = C_{17} = C_{22} = C_{21}$	-176.5(3)
$C_2 - C_3 - C_4 - C_7$	1/7.0(3)	$C_{20} = C_{17} = C_{22} = C_{21}$	170.3(3)
$C_{3} - C_{4} - C_{5} - C_{6}$	-176.0(4)	$C_{20} = C_{21} = C_{22} = C_{17}$	1.7(4)
$C^{2} = C^{1} = C^{2} = C^{2}$	1/0.9(4)	$N4 - C_{23} - C_{24} - C_{23}$	-1714(2)
$C_2 = C_1 = C_0 = C_3$	-0.4(7)	$N4 - C_{23} - C_{24} - C_{20}$	-1/1.4(3)
C4 - C3 - C0 - C1	-0.3(7)	C11 - C12 - N1 - C3	-40.3(3)
$C_3 = C_4 = C_7 = N_1$	110.2(3)	CII = CI2 = NI = C/	-168.0(2)
$C_3 - C_4 - C_7 - N_1$	-68.1(4)	C9 - C8 - N1 - C12	08.1 (3)
NI-C8-C9-C10	-50.3(3)	C9—C8—N1—C7	-1/0.8(3)
	15.6 (4)	C4 - C / - N1 - C12	-61.3 (3)
C8—C9—C10—C13	-163.2 (3)	C4—C/—N1—C8	177.5 (3)
C13—C10—C11—C12	-178.3 (3)	N4—C15—N2—C14	-180.0 (3)
C9—C10—C11—C12	2.7 (4)	N3—C15—N2—C14	0.5 (4)
C13—C10—C11—S1	0.7 (3)	C13—C14—N2—C15	1.3 (4)
C9—C10—C11—S1	-178.3 (2)	S1—C14—N2—C15	-179.3 (2)
C10-C11-C12-N1	12.6 (4)	N2—C15—N3—C16	-3.5 (4)
S1—C11—C12—N1	-166.3 (2)	N4—C15—N3—C16	177.0 (3)
C11—C10—C13—C14	-0.7 (4)	N2—C15—N3—C17	177.5 (3)
C9—C10—C13—C14	178.2 (3)	N4—C15—N3—C17	-2.0 (4)
C11—C10—C13—C16	179.2 (3)	O1—C16—N3—C15	-175.8 (3)
C9-C10-C13-C16	-1.9 (5)	C13—C16—N3—C15	4.3 (4)
C16—C13—C14—N2	-0.1 (5)	O1-C16-N3-C17	3.3 (4)
C10-C13-C14-N2	179.8 (3)	C13—C16—N3—C17	-176.6 (2)
C16-C13-C14-S1	-179.6 (2)	C22—C17—N3—C15	-93.6 (3)
C10-C13-C14-S1	0.3 (3)	C18—C17—N3—C15	89.9 (3)
C14—C13—C16—O1	177.5 (3)	C22—C17—N3—C16	87.3 (3)
C10-C13-C16-O1	-2.3 (5)	C18—C17—N3—C16	-89.2 (3)
C14—C13—C16—N3	-2.6 (4)	N2-C15-N4-C23	9.3 (4)

C10-C13-C16-N3	177.6 (3)	N3—C15—N4—C23	-171.2 (3)
C22-C17-C18-C19	-1.2 (4)	C24—C23—N4—C15	92.6 (4)
N3—C17—C18—C19	175.3 (3)	N2-C14-S1-C11	-179.4 (2)
C17—C18—C19—C20	0.7 (5)	C13—C14—S1—C11	0.1 (2)
C18—C19—C20—C21	1.0 (5)	C10-C11-S1-C14	-0.5 (2)
C18—C19—C20—Cl1	-177.5 (2)	C12—C11—S1—C14	178.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N4—H4…Cl1 ⁱ	0.86	2.73	3.469 (3)	144
C8—H8 <i>B</i> ···O1 ⁱⁱ	0.97	2.59	3.220 (4)	123

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*+1, -*y*+2, -*z*+1.